翻訳と辞書
Words near each other
・ ユニゾンモール
・ ユニゾンモール東中野
・ ユニゾン・キャピタル
・ ユニタリアニズム
・ ユニタリアン
・ ユニタリアン主義
・ ユニタリー
・ ユニタリー作用素
・ ユニタリー変換
・ ユニタリー性
ユニタリー性 (物理学)
・ ユニタリー演算子
・ ユニタリー空間
・ ユニタリー行列
・ ユニタリー表現行列
・ ユニタリ作用素
・ ユニタリ双対
・ ユニタリ変換
・ ユニタリ性
・ ユニタリ演算子


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

ユニタリー性 (物理学) : ウィキペディア日本語版
ユニタリー性 (物理学)[ゆにたりーせい]
量子力学におけるユニタリー性とは、量子系の時間発展を記述する演算子、または散乱過程を記述するS行列ユニタリー演算子であることを言う。また、そこから導かれる量子系の性質のことである。
===概要===
系のハミルトニアン \hat が時間に依存しない場合、系の時間発展はシュレディンガー方程式
: i \frac \left| \psi(t) \right\rangle = \hat\left| \psi(t) \right\rangle
によって定められる。その解は、演算子 \hat(t) \equiv e^ によって
: \left| \psi(t) \right\rangle = \hat(t) \left| \psi(0) \right\rangle
と書かれる。この \hat(t) がユニタリー演算子であること \hat(t) \hat(t)^\dagger = \hat^\dagger \hat=1 は、ユニタリー性の初歩的な例である。その帰結として、波動関数の規格化が保たれることが分かる:
: \left\| \left| \psi(t) \right\rangle \right\|^2 = \left\langle \psi(0) \right| \hat(t)^\dagger \hat(t) \left| \psi(0) \right\rangle = \left\| \left| \psi(0) \right\rangle \right\|^2 =1
この事実はより直感的に、時間発展の下で、確率の総和が1のまま変化しないことを表していると言える。
量子系に対する測定の作用を考えると、測定の反作用のため、着目している系の変化がユニタリー演算子で記述できない場合がある。そのような時間発展を非ユニタリー時間発展と呼ぶ。その場合も、着目している系と測定装置の全体は、ユニタリー性が保たれていると考えられている。言い換えると、閉じた量子系(すなわち、測定の作用を考えるなら測定装置も含む全体系)の時間発展はユニタリー性を持っているが、測定装置や測定結果に関する情報を捨てて、着目している系に関する情報のみを残すと、その時間発展が非ユニタリー時間発展となる場合がある。

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「ユニタリー性 (物理学)」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.